Smooth Volume Rigidity for Manifolds with Negatively Curved Targets

نویسنده

  • CHRIS CONNELL
چکیده

We establish conditions for a continuous map of nonzero degree between a smooth closed manifold and a negatively curved manifold of dimension greater than four to be homotopic to a smooth cover, and in particular a diffeomorphism when the degree is one. The conditions hold when the volumes or entropy-volumes of the two manifolds differ by less than a uniform constant after an appropriate normalization of the metrics. The results are qualitatively sharp in the sense that all dependencies are necessary. We present a number of corollaries including a corresponding finiteness result. Notably, the method of proof does not rely on a Cα or Gromov-Hausdorff precompactness result nor on surgery technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 09 SMOOTH ( NON ) RIGIDITY OF CUSP - DECOMPOSABLE MANIFOLDS

We define cusp-decomposable manifolds and prove smooth rigidity within this class of manifolds. These manifolds generally do not admit a nonpositively curved metric but can be decomposed into pieces that are diffeomorphic to finite volume, locally symmetric, negatively curved manifolds with cusps. We prove that the group of outer automorphisms of the fundamental group of such a manifold is an e...

متن کامل

Quasi-conformal Rigidity of Negatively Curved Three Manifolds

In this paper we study the rigidity of infinite volume 3-manifolds with sectional curvature −b2 ≤ K ≤ −1 and finitely generated fundamental group. In-particular, we generalize the Sullivan’s quasiconformal rigidity for finitely generated fundamental group with empty dissipative set to negative variable curvature 3-manifolds. We also generalize the rigidity of Hamenstädt or more recently Besson-...

متن کامل

`1-Homology and Simplicial Volume

Introduction A pervasive theme of contemporary mathematics is to explore rigidity phenomena caused by the symbiosis of algebraic topology and Riemannian geometry on manifolds. In this context, the term " rigidity " refers to the astounding fact that certain topological invariants provide obstructions for geometric structures. Consequently , topological invariants of this type serve as interface...

متن کامل

L-cohomology of Negatively Curved Manifolds

We compute the L-cohomology spaces of some negatively curved manifolds. We deal with two cases: manifolds with finite volume and sufficiently pinched negative curvature, and conformally compact manifolds.

متن کامل

On Negatively Curved Finsler Manifolds of Scalar Curvature

In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008